首页> 外文OA文献 >Error Estimates for Interpolation of Rough and Smooth Functions using Radial Basis Functions
【2h】

Error Estimates for Interpolation of Rough and Smooth Functions using Radial Basis Functions

机译:使用径向基函数的粗糙函数和光滑函数插值的误差估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis we are concerned with the approximation of functions by radial basis function\udinterpolants. There is a plethora of results about the asymptotic behaviour of the error between appropriately smooth functions and their interpolants, as the interpolation points fill out a bounded domain in Euclidean space. In all of these cases, the analysis takes place in a natural function space dictated by the choice of radial basis function - the native space.\udThis work establishes Lp-error estimates, for 1 ≤ p ≤ ∞, when the function being interpolated fails to have the required smoothness to lie in the corresponding native space; therefore, providing error estimates for a class of rougher functions than previously known.\udSuch estimates have application in the numerical analysis of solving partial differential equations using radial basis function collocation methods. At first our discussion focuses on the popular polyharmonic splines. A more general class of radial basis functions is admitted into exposition later on, this class being characterised by the algebraic decay of the Fourier transform of the radial basis function. The new estimates presented here offer some improvement on recent contributions from other authors by having wider applicability and a more satisfactory form. The method of proof employed is not restricted to interpolation alone. Rather, the technique provides error estimates for the approximation of rough functions for a variety of related approximation schemes as well.\udFor the previously mentioned class of radial basis functions, this work also gives error estimates when the function being interpolated has some additional smoothness. We find that the usual Lp-error estimate, for 1 ≤ p ≤ ∞, where the approximand belongs to the corresponding native space, can be doubled. Furthermore, error estimates are established for functions with smoothness intermediate to that of the native space and the subspace of the native space where double the error is observed.
机译:在本文中,我们关注径向基函数\ udinterpolants对函数的逼近。关于适当的平滑函数及其插值之间的误差的渐近行为,有大量结果,因为插值点填充了欧氏空间中的有界域。在所有这些情况下,分析都是在选择径向基函数所决定的自然函数空间中进行的-原始空间。\ ud当内插函数失败时,这项工作建立了L≤1≤p≤∞的误差估计。具有在相应的本机空间中所需的平滑度;因此,可以为一类比以前已知的粗函数提供误差估计。\ ud这种估计已应用于使用径向基函数搭配方法求解偏微分方程的数值分析。首先,我们的讨论集中在流行的多谐波样条上。稍后将对更一般的径向基函数类进行解释,该类的特征是径向基函数的傅立叶变换的代数衰减。本文提供的新估计数具有更广泛的适用性和更令人满意的形式,为其他作者的近期著作提供了一些改进。所采用的证明方法不仅限于插值。而是,该技术还为各种相关的近似方案提供了粗函数近似的误差估计。\ ud对于先前提到的径向基函数,当内插函数具有一些额外的平滑度时,这项工作还给出了误差估计。我们发现,对于1≤p≤∞,通常的Lp误差估计可以加倍,其中的近似值属于相应的本征空间。此外,针对具有平滑度的函数建立误差估计,该平滑度介于观察到误差两倍的本机空间和本机空间的子空间之间。

著录项

  • 作者

    Brownlee, Robert Alexander;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号